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A rheonomous mechanical system is considered. The kinetic energy of this system is represented in the form of a complete 
quadratic polynomial with coefficients which depend explicitly on time. It is assumed that the coefficients of this polynomial are 
unknown and that uncontrolled limited perturbation act on the system. A control law is proposed which enables the system to 
be brought to a specified final state after a finite time using a force of finite modulus. Piecewise-linear feedbacks are used in the 
proposed algorithm and the amplification factors of these feedbacks are increased as the system approaches the final state. The 
algorithm is validated using the second Lyapunov method. The results of numerical modelling are presented. 0 2002 Elsevier 
Science Ltd. All rights reserved. 

In the majority of publications concerned with constructing a control for mechanical systems with 
unknown parameters, either algorithms are proposed which solely ensure the asymptotic stability of 
the motion of the system, that is, which bring the system to a specified state after a finite time [l, 21, 
or no constraints whatsoever are imposed on the controls. In practice, as a rule, there are such constraints. 

In the case of scleronomous mechanical systems, an approach based on decomposition has been 
proposed in [3,4] which enables one, using a finite force, to bring a system, subjected to uncontrolled 
perturbations and with known inertia matrix, to a specified state after a finite time. Other approaches, 
which propose the use of programmed trajectories [5,6] and linear feedbacks with piecewise-constant 
coefficients [7, 81, have been developed for controlling a Lagrangian system with an unknown kinetic 
energy matrix. 

1. FORMULATION OF THE PROBLEM 

A rheonomous mechanical system is considered, the kinetic energy of which is represented in the form 
of a complete quadratic polynomial with coefficients that depend explicitly on time 

~(t,s.9)=~(A(‘,~)4.4)+(att.~),4)+ao(r.4) (1.1) 

Here, q E R” is the vector of the generalized coordinates of the system, 4 is the generalized velocity 
vector, and (m, a) denotes a scalar product. It is assumed that the positive-definite symmetric matrix 
A(?, 4) E Ci is unknown, that its eigenvalues for any t and q belong to the interval [WI, M], 0 c m s M 
and that the partial derivatives are uniformly bounded with respect to the norm, that is, 

mz* s (A(t,q)z,z) c Mz*. ‘dze R” 
(1.2) 

The vector function a@, q) E C’ and the function a& q) E C’ are also assumed to be unknown and 
to satisfy the conditions 

(1.3) 
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Above and henceforth, 1.1 is the Euclidean norm of a vector and ]]*]I is the norm of a matrix, which 
is understood as the norm of the corresponding operator in Euclidean space. 

The dynamics of the system being considered are described by Lagrange’s equations of the second 
kind 

ddr_dr=,+p 
dt ag a9 (1.4) 

It is assumed that the system is directly controlled with respect to each degree of freedom, the constraint 

1UlG u, u>o (1.5) 

is imposed on the n-dimensional control forces vector, and the generalized forces S are unknown and 
satisfy the condition 

Other known forces can act on the system together with the unknown forces S and the control forces 
U. We shall assume that the control resources are sufficiently large to compensate these forces and that 
the quantity U is the maximum possible strength of the control which remains after such 
compensation. 

Problem. Suppose the constants m, M, U and Dj (j = 1, . . . , 4) are given. It is required to construct 
a control which satisfies constraint (1.5) and indicates the domain of permissible initial states from 
which system (1.4), under the action of this control, reaches the specified final state of rest @, 0) after 
a finite time, whatever the matrix A, the vector a, the function a0 and the perturbations S, which 
satisfy conditions (1.2), (1.3) and (1.6), may be. Here, it is assumed that the phase variables q, (i are 
accessible to measurement at each instant of time. In the case of a scleronomous mechanical system, 
that is, for a system with a kinetic energy which does not depend explicitly on time and has the form 
T(q, 4) = (A(q)Q, $/2, a control algorithm, based on the methods of the theory of stability of motion, 
has been developed in [7,8] which permits system (1.4) to be brought from an arbitrary initial state to 
a specified first state of rest after a finite time. Linear feedbacks with piecewise-constant coefficients 
are used in this algorithm. The coefficients increase and tend to infinity as the trajectory of the system 
approaches the final state. However, the control forces remain bounded and satisfy the conditions 
imposed on them. Below, this approach is extended to rheonomous mechanical systems. 

2. DESCRIPTION OF THE ALGORITHM 

Without loss of generality, we shall assume that the final state coincides with the origin of the coordinates, 
that is, q = 0 (this can be achieved using an appropriate change of variables). 

We will construct the control in the form of a linear feedback with respect to the generalized 
coordinates and velocities 

u = --a,4 -Pkg. adb > 0 (2-l) 

with amplification factors in the form of piecewise-constant functions. We will now describe the algorithm 
for changing these coefficients. 

We will denote the initial state of the systems by go = q(O), go = g(O) and introduce the function 

W(q,cj) = M4* + (M2i4 + cJ*q*)K (2.2) 

The quantity W(q, (i) has the dimension of energy and characterizes the remoteness of a point (q, 4) 
from the final point (0, 0): the set of the level W(q, 4) = C of the function W in the phase space 
q, 4 E Rh is the ellipsoid 2CM g2 + U*q* = C*, which contracts to the origin of the coordinates (0,O) 
when C + 0. 

We put 

k = 1,2,... (2.3) 
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The sets of the level of the function W(q, 4) corresponding to the constants W, are a family of ellipsoids 
which contract to zero as k increases. We will denote the instant if time when the trajectory hits the 
ellipsoid W(q, 4) = WI for the first time by tl and we put q1 = q(tl), Gl = cj(tl). It will be shown below 
that, in the case of the chosen control algorithm, the trajectory of the system tends to the origin of 
coordinates and therefore such an instant of time exists. The instant when the trajectory of the system 
hits the ellipsoid W(q, 4) = W, for the first time is denoted by t2. We put q2 = q(t2), 4 = &) and 
so on. 

The sequence {tk) determines the instants when the coefficients ok, & in Eq. (2.1) are changed. We 
will specify the values of these coefficients in the half-interval of time [tk, tk+,) (k = 0, 1, . . .) as follows: 

a: = rnflk (2.4) 

In the phase space Rb, the trajectory of the motion of the mechanical system consists of segments 
of the trajectories of different systems of differential equations: the k-th segment joins the points 
(qk, &) and (qk+l, c&+~) and corresponds to a system of the form (1.4), (2.1) in which the amplification 
factors ak, fik are constant and are determined by formula (2.4). All the points (qk, &) lie on the 
corresponding ellipsoids W(q, cj) = Wk(k = 0, 1, . . .) (Fig. 1). 

Note that, generally speaking, the function W is not a monotonically decreasing function along the 
trajectory of the system, despite the fact that the trajectory tends to the origin of coordinates (0, 0). 
Hence, a trajectory can have more than one point of intersection with certain ellipsoids. We will assume, 
for example, that, after designating the new coefficients at the instant tk, the trajectory of the system 
has started to “move away” from the origin of coordinates (0, 0) and again intersected the ellipsoid 
W(q, 4) = Wk+, at the inStant t’ > tk. The index k and the coefficients ok, pk do not change at the 
instant t’. 

Hence, when implementing the algorithm, it is sufficient to measure the actual values of the phase 
variables of the system q, cj and to store in the memory the actual value of the index k, which is equal 
to the number of the smallest ellipsoid which the trajectory of the system has already visited. Since, in 
expression (2.2) for the function W, only the known parameters of the problem appear, apart from the 
phase variables, the value of the function W(q(t), g(t)) can be calculated at any instant. Each time the 
value of W decreases by a factor of two, the index k increases by unity, the coefficient a increases by a 
factor of $2 and the coefficient p increases by a factor of 2. 

3. VALIDATION OF THE ALGORITHM 

We will use Lyapunov’s second method to validate the algorithm. Consider the kth segment of the 
trajectory for a certain fixed k 2 0. This Segment begins at the point (qk, &) at the inStant tk and 
corresponds to system (1.4), (2.1) with constant feedback coefficients specified by formulae (2.4). We 
will now show that there is such an instant tkk+, when the trajectory of the system hits the ellipsoid 
w(% 4) = wk+l. 

Fig. 1 
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The Lyapunov function and its evaluation. We put 

Ek = ml(4M) (3-I) 

and introduce Lyapunov’s function 

vk(t,q.4)=~(A(t.q)~,P)+$P,q2+&,(A(t,q)4,q) (3.2) 

The expression for the function vk contains the kinetic energy matrixA(t, q), which is assumed to 
be unknown. We estimate the value of this function at an arbitrary point (t, q, 4) of the expanded phase 
space in terms of known functions. The relations 

i&,(Akq)l~ j+i,4)+2&Aq,q)~ f (Aq,d++Aq,q) 

hold by virtue of the Cauchy inequality and expression (3.1), and it follows from condition (1.2) 
that 

$(Aq,q) s +q2 s pkq2 

Substituting the inequalities obtained into relation (3.2) and again using condition (1.2), we obtain the 
following limits for the function Vk 

(3.3) 

where 

Kk (9.4) = $4’ + pkq2h v+%G)= 8 ‘t&i2 +&q2) (3.4) 

We will now establish some relations connecting the functions Vt(q, 4) and W(q, 4). Substituting the 
formula for the coefficient pk from (2.4) into expression (3.4), we obtain for the function Vf. 

v:(qk,4k) = 
loMfj,2wk + 5u2q,2 

16wk (3.5) 

By construction, the point (qk, &) lies on the ellipsoid with number k. It follows from this and from 
definition (2.2) of the function W that 

W, = W(qk,cjk)=Mtj;+(M2d;+U2qf)K 

Using this equality, the numerator in expression (3.5) is reduced to the form 5Wi and the relation 

(3.6) 

which connects the functions V:(q, 4) and W(q, Q), follows from this. This means that, for any k, the 
ellipsoid with number k is the level set of the quadratic form V$(q, rj), which corresponds to the value 
5Wk/16. In accordance with the algorithm, the point (q(t), g(t)), when t E [tk, tk+l), lies outside the 
(k + 1)th ellipsoid, that is, outside the level set V:+‘(q, 4) = 5Wk+i/16, and, therefore, 

v,k+‘(q(t),&t)) > SW,+, /I6 = 5w, 132, tk s t < tk+l 

The equality &+i = 2P, holds by virtue of formulae (2.3) and (2.4), and the relation 

Mi2 +pkq2 3 (Mk2 +&+,q2)/2 

follows from this. Consequently, the limit 
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V+ ~ (q(t), il(t)) >~ V+ TM (q(t), t~(t)) / 2 ~> 5Wk / 64 (3.7) 

holds in the kth segment of the trajectory. 

Negative definiteness of the derivative of Lyapunov's function. We will now calculate the derivative V k. 
We introduce the notation. 

I B(t,q) = (t,q) --~q(t,q), b(t,q) = ~q  ( t ,q)-  Oa -~( t ,q)  

and differentiate the function V k according to (1.4) and (2.1). We obtain 

Vk(t 'q '0)=-  Otkl--~kA'~ 2 ~t 2 qi q,q - 

--~-k~kq 2 - EkO~k (q,  q )  -t- ( S  + b, q at- Ekq ) -- £k (Bil, q) 

(3.8) 

(3.9) 

where I is the identity 
We will now estimate the individual terms in expression (3.9). Using the Cauchy inequality and 

relations (1.3) and (3.8), we obtain 

~k .A+e~ot~q2 ' lek(Bo'q) l<~'~ q + 2 l¢,otk(~j,q)l~ <_4..q /)3 ._2 e~D3 q2 (3.10) 

Using the inequality [ 2Ek(O, q)[ ~< 82/16+ 16e~q 2, expression (3.1) for ek and relation (3.7), we estimate 
the quantity lO+e~/I as follows 

17 .2 +171~q2 <~ 17 (Mq2 +fjkq2)=llo__~V+k(q, il) = 
(q+ekq)2 ~ ~ q  16M 

17 .V x . . . .  2 ~< 1088 
- .^ . .~.k.  . . (  + tq, q)) 5 0 ~ k  (V+k(q,q)) 2 ,uM + (q,q) 

whence, taking the second expression in (3.4) into account, we obtain 

I (S+ b, il+ ekq) ] ~ I S+ b l , ~ ( M i l  2 + I$~q 2) 
VzMwk 

(3.11) 

The relation 

E-t'k ~qi  ~A <~ ~¢'ffDz Ek [q[ (3.12) 
2 i--I aqi 2 

n 
holds by virtue of (1.2) and the inequality i=Ell qi] <~ ~,'h I q I. 

Substituting inequalities (3.10)-(3.12) into expression (3.9) and making use of conditions (1.2), (1.3) 
and (1.6), we arrive at the following limit for the derivative of the function V k along the kth segment 
of the trajectory 

- ~ ( $ 0  + D4)- ~k]ql i l  2 (3.13) 

We will now show that, under certain additional assumptions, the derivative V k will be negative- 
definite. We assume that 
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and introduce the sets 

G=((q,Q)e R*“: W(q,cj)==Q), Gk =r(q,$:,q,+}, k=O,l... 

The inequality 3q$Y2 < 5W2(qk, &) results from the definition of the function W, and, by virtue of 
relations (2.3), it follows from this that the point (qk, &) lies in the domain Gk. 

Lemma 1. Suppose the initial point (qk, &) of the kth segment belongs to the set G, the matrixA, 
the vector functions S, a and the function a0 satisfy conditions (1.2), (1.3) and (1.6) and 

So + D4 s (3.14) 

Then on the part of the trajectory which starts at the point (qk, C&J, the derivative of the function Vk 
lies outside the ellipsoid W(q, 4) = Wk+l and in the set Gk and, by virtue of system (1.4), (2.1), (2.4), 
satisfies the inequality 

Wq,9) s -2 V%,q,4) (3.15) 

Proof. By the condition of the lemma, W(qk, CT&) c 52 and, consequently, D:, 0: c mu2 l(32Wk). It follows from 
this and from definitions (2.4) and (3.1) of the numbers sk, ok that 

<,a, &+4 44 & 

2 4’ 2%4hl 

From condition (3.14) and formulae (2.4), we obtain 

(3.16) 

(3.17) 

By virtue of relations (2.4) and (3.1) we have 

QM=?, &kPk -&$k =- akPk , _m > 3akPk 

( ) 4M 4M -16M 
(3.18) 

The inequality Di C \‘fi_iJllrlu/(8\;Im) follows from the condition w(qk, 9k) < 8. Since the section of the trajectory 
being considered lies in the set Gk, we have 

ak 19 Ic fiokwk 1(4&fu) 

and, consequently, 

AD, 
-y--E’,C+~ (3.19) 

Substituting inequalities (3.16)-(3.19) into (3.13) and making use of the equalities (3.4), we arrive at the relations 

rik(f,9,9) c - s(Mtj2 +,&q2) 6 - $5$(9.S, 

whence the assertion of the lemma follows, by virtue of limits (3.3). 

Lemma 2. Suppose the matrixA, the vector-functions S, a and the functions a0 satisfy conditions (1,2), 
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(1.3), (1.6) and (3.4) and that (qk, Ok) e G. Inequality (3.15) is then satisfied in the kth interval of the 
trajectory. 

Proof. It has already been established above that (qk, Ok) ~ Gk" By virtue of Lemma 1, to prove Lemma 2 it is 
sufficient to show that the kth section of the trajectory as a whole lies in the domain G k. 

Let us assume the opposite. Suppose t' is the first instant when the trajectory leaves the domain Gk, that 
is 

q2(t,) = 5W 2 (3.20) 
3U 2 

On the other hand, it follows from definitions (2.4) and (3.1) of the coefficients Ek, ~k and from relations (3.3) 
and (3.4) that 

e.2q 2 (t') = -----~[ikq 2 (t') <~ - - - - ~  (Mq 2 (t') + ~/cq 2 (t')) = 
16M" 16M" 

= ~ V_ k (q(t'), gl(t')) <~ CaM'm k . . . .  _.-7-275-.~ V (t ,q(t ),q(t )) 

Since, when tk ~< t < t', the part of the trajectory being considered lies in the domain Gk, then, by virtue of Lemma 
1, the function Vk decreases along it and, using relation (3.2), the limit can be continued as follows: 

Consequently 

•2q2(t, ) m k . . 5m W~ 
< - ~ f  V (tkq(t k ),q(t k )) ~< 6 ~  V+k(q(tk )'q(tk )) = ~ k 

2 - , -  5mWk 5 W2 
q ~t ) < ~ =  

96M e k 3U 2 

which contradicts condition (3.20). 

It follows from the assertions of Lemmas 1 and 2 that, outside the ellipsoid W(q, q) = W~+1, the 
function Vk strictly decreases along a trajectory of system (1.4), (2.1), (2.4) and, by virtue of relations 
(3.3)-(3.6), there is an instant tk÷l when the trajectory hits the ellipsoid with number k + 1. 

It is clear that, if the initial state of the system (q0, 00) belongs to the set G, the ellipsoid 
W(q, O) = Wo and, together with it, all the remaining ellipsoids W(q, it) = Wk (k = 1, 2 . . . .  ) lie in this 
set as a whole. Consequently, all the points (qk, 0k) also belong to G and the assertions of Lemmas 1 
and 2 are applicable to any of the sections constituting the trajectory of motion of the system. 

Estimation of  the time of  motion. We will now show that the system reaches the origin of coordinates 
after a finite time. In order to estimate the time of motion along the kth section of the trajectory, we 
integrate inequality (3.15) and obtain 

40M Vk(tk,qk,glk) 
tk+ t - t  k <~ 3~k In (3.21) 

vk  ( tk +l,qk +l,Ok +l ) 

By virtue of relations (2.4) and (3.3)-(3.7), we have 

v k (tk, qk, 0k) ~< 5 W~ 

Vk, . . 3 . m . 2  2 >_ Vk(tk+l , qk+l,0k+l ) ~> - tqk+l, qk+l ) = "8 ( q~+l + ~kqk+l ) 

3m 2 3m k+t . _ 3m 
>>- • " (MO~+I +[i~+lqk+l)= ._~..V~. (qk+l,qk+l)-- Wk 

16M 64M 

Substituting these relations and expression (2.4) for o~ k into inequality (3.21), we obtain the following 
estimate of the time of motion from the point (qkOk) up to the point (qk+l, Ok+l) 
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fk+l -'k 6 22-y k=O,l,... 

The total time of motion of the system up to the final state T, does not exceed the sum of the series 

(3.22) 

Consequently, the proposed control algorithm brings system (1.4) to the origin of coordinates after a 
finite time. 

We will now verity that condition (1.5) is satisfied along the trajectory of the motion. To do this, we 
estimate the modulus of the vector of the control forces along the kth section of the trajectory using 
the Cauchy inequality and relations (2.4) (3.3) and (3.4) as follows: 

Since the function V, decreases in the half-interval [tk, tk+i) we can use relation (3.6) to continue the 
estimate as follows: 

whence inequality (1.15) follows. 

Modification ofthe algorithm. It follows from the arguments presented above that the system reaches 
the point (0,O) after a finite time if the initial stage belongs to the ellipsoid G. Note that any point of 
the form (q, 0) in the phase space of the system can be chosen as the final state. Here, the set of ellipsoids 
on which a change in the amplification factors occurs is found to be displaced by the vector q while the 
parameters of the ellipsoids remain as before. We will now show that, by making use of this fact and 
modifying the proposed algorithm, it is possible to extend the set of permissible initial states considerably. 

Suppose that 

(3.23) 

We first transfer the system to the point q = qo, 4 = 0. To do this, we make the change of variables 
q’ = q - qo. In the new variables G’ = {(q’, Q’): W(q’, Q’) c Q}, which is analogous to the set G considered 
earlier, is an ellipsoid with its centre at the point q’ = Q’ - 0, and the initial state of the system, that is, 
the point q6 = 0, q. = Qo, belongs to this set by virtue of inclusion (3.23) and definition (2.2) of the 
function W. Consequently, the control law u = - a& - f&q’ with the above-mentioned algorithm for 
changing the coefficients ak, ok brings the system after a finite time to the centre of this ellipsoid, that 
is, to the point q = qo, 4 = 0. 
_JIn the phase space q, 4, we chose a finite sequence of points ($, 0), j = 1,2, . . . , J, such that 4 = qo, 
4 = 0 and 

l$ -qj-i lsn/u, j=2,...,J (3.24) 

The transfer of the system from the point ($, 0) = (qo, 0) to the point (q’, 0) = (0, 0), that is, to the 
origin of coordinates, is accomplished after J - 1 steps, on applying the control algorithm again each 
time. The point (q’, 0) corresponds to the initial state of the system at the j-th step and the point 
($+l, 0) corresponds to the final state. It follows from inequality(3.24) and definition (2.2) of the function 
W that, for any j, the point (q’, 0) belongs to the ellipsoid G’ = {(q, 4) : W(q - ?I+‘, 4) < D with its 
centre at ($+ , 0). This e lli p soid is the set of permissible initial states of the system in order for it 
to be brought to the final state (q --1+l 0 at the jth step. Consequently, the control law u = -a,& - , ) 
&(q - q’+ ) with the above-mentioned algorithm for rechanging the coefficients akr,ff transfers the 
system from the point @, 0) to the centre of this ellipsoid, that is, to the point q = qJ ,Q = 0 after a 
finite time. Hence, after J - 1 steps, system (1.4) finds itself in the final state (0,O). 
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The basic result and its discussion. The following theorem sums up the arguments which have been 
presented above. 

Theorem. Suppose the matrixli, the vector functions S, a and the function a0 satisfy conditions (1.2), 
(1.3), (1.6) and (3.4) and (qo, do) E G,. Then, the proposed control law transfers system (1.4) from the 
initial state (qo, Qo) to the phase space origin in a finite time. Hence, the control forces will satisfy 
constraint (1.5). 

We will now compare this result with the results obtained earlier in [3-8]. It has already been 
noted above that the approach used here is an extension of that developed in [7,8] for scleronomous 
systems to rheonomous mechanical systems. In the case of scleronomous systems, the set of permissible 
initial states is identical to the whole of the phase space, that is, the system is brought from an arbitrary 
initial position to a specified final state. In the case of rheonomous systems, the set of permissible initial 
states (3.23) is a “band” in the phase space R? the condition 4: < QJ(2iV) is imposed on the initial 
velocities. 

Note that only the known parameters of the problem appear in the definition of the set G. and the 
expressions for the function Wand the amplification factors ok, pk. To implement the algorithm, it is 
sufficient to know the value of m, M and U and, also, the values of the phase variables of the system 
at each actual instant of time. The constants Di, D2, D, only occur in the conditions determining the 
set of permissible initial states G,. These conditions, as well as the constraints on the vector function 
a@, q), the function uo(t, q) and the perturbing forces S in relations (3.14), are only sufficient conditions 
for transferring the system to the final state. The algorithm proposed can therefore also be formally 
applied in cases when constraints (3.14) are not satisfied and the initial state of the system does not 
belong to the set G,. Simulation of the dynamics of different mechanical systems shows that the algorithm 
is also effective beyond the limits of the sufficient conditions which have been presented. 

The set of permissible initial states in the case of the control laws developed earlier in [3-6], which 
are based on the principle of decomposition, is also the whole of the phase space. However, these laws 
are only applicable to scleronomous systems. 

The conditions imposed on the perturbing force S, obtained earlier in [3,4], are analogous to condition 
(3.14) since, in the case of a scleronomous system, one can put D4 = 0. Furthermore, unlike in this 
paper, it was assumed in [3,4] that the kinetic energy matrix_4 is known. 

The condition, developed in [5,6], for transferring the system to the final state using a control law 
is specified by the inequality U > S, that is, simple superiority of the control over the disturbance is 
sufficient to achieve the aim of the control. This condition suitably distinguishes this approach from 
the other approaches considered here in which multiple excess of the control resources over the 
disturbance is required and the relation between them depends on the other parameters of the system. 

A more detailed comparison of the control laws considered for scleronomous mechanical systems 
has been presented in [9]. In particular, the above-mentioned algorithms were used to transfer a mass 
point of unknown mass, moving along a straight line, to the origin of coordinates. The time optimal 
control for this problem is known [lo]. A comparison shows that, in the case of this simplest mechanical 
system, the time of motion under the action of the control laws proposed earlier in [3-81 differs from 
the optimal time by a factor of two or three. 

Together with the approaches discussed here for constructing a control for mechanical systems under 
uncertainty, there is a set of other approaches which ensure the asymptotic stability of a specified state 
of a system, that is, which ensure that it is transferred to the final position in’ a finite time. In spite of 
the fact that, in practical applications, the system is always only brought to within a certain neighbourhood 
of the specified state, the formulation of the problem of transfer in a finite time makes sense. As the 
dimensions of the final neighbourhood become smaller, the time of the motion of the system, under 
the action of the algorithm, which ensures asymptotic stability tends to infinity while the time of the 
motion of the system under the action of an algorithm which guarantees the finiteness of the process 
remains finite. Consequently, the last algorithm is more effective from the point of view of its operation 
speed. 

4. RESULTS OF SIMULATION 

We will illustrate the operation of the algorithm using numerical simulation of the rotation of a body 
with a moment of inertia which changes with time. Consider a system consisting of a weightless rod 
and a point mass of unknown mass ma (the right-hand side of the upper part of Fig. 2), which moves 
along the rod in an uncertain way. It is assumed that the rod rotates in a horizontal plane about one 



794 I. M. Anan’yevskii 

Fig. 2 

of its ends under the action of a control moment u. We will denote the angular coordinate and the angular 
velocity of the rod by q and 4 and the distance from the axis of rotation to the point mass by l(t). In the 
notation adopted above, the individual terms in expression (1.1) for the kinetic energy of the system 
take the form 

A( 1) = qJ2(t), a 5 0, a&) = m&t)/2 

and the equations of motion take the form 

m,12(t)G f 2m,l(t>i(r)g = S+ u (4.1) 

In this case, the moment of the dry friction forces which acts on the rod serves as the unknown 
generalized force S. In the simulation, the constants m, M and U and the mass mg, the perturbations 
S and the law of motion of the point mass along the rod r(t), which are also assumed to be unknown, 
were taken as follows: 

m = 0.25 kg, M = 2.25 kg, (I=lONm 

S = -0.1 sign(q)N m, m,=l kg, I(t)=l+~sinof m 

Using the proposed control law, the rod is shifted from the initial state q. = 1 radian, Q. = 1 radian/s 
into the final state q = 4 = 0. Integration of Eq. (4.1) was discontinued when the Euclidean distance 
from the actual point of the trajectory to the final point in the phase space (q, 4) E R2 became less than 
0.01. 

The results of the simulation for the case when o = 1 are shown in Fig. 2. The time-dependence of 
the angle of rotation of the rod q is represented by the thin solid curve and the time-dependence of 
the quantity (~I/10 is represented by the heavy solid curve (the discontinuous curve). The coefficients 
ok and l3k were changed seven times during the course of the integration. The total time of motion was 
found to be equal to T, = 3.98 s. 

It is clear that constraint (1.5) is satisfied with a considerable margin. The motion of the system, which 
is controlled using the law (2.1), was simulated with feedback coefficients ok, &which were twice those 
prescribed by algorithm (2.4). The time-dependences of the angle of rotation of the rod (the thin curve) 
and of the quantity juj/lO (the heavy curve), for the case of this control law, are represented by the 
dashed curves in Fig. 2. In this case, the time of motion was reduced to T. = 2.53 s and, as previously, 
the control u satisfies constraint (1.5). 
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Fig. 3 

In order to estimate the efficiency of the algorithm when condition (qe, 4s) E G, of the theorem 
formulated above is violated, the dynamics of system (4.1) were simulated for different values of w. 
The dependence of the overall time of motion of the system on o up to the final state, where o E [0, 
l&r], is represented by the continuous curve in Fig. 3. In this case 

and the constant D2 from constrains (1.2) satisfies the inequality o s Dz. Consequently, P < mU2/(32w2) 
and, in the case of the chosen values of the system parameters, for a large part of the interval 
0 < o s 1Chr the initial state q. = 1, Go = 1 does not lie in the domain G,. Nevertheless, the proposed 
control law does bring the system to the final state. 

The dependence of the absolute magnitude of the control moment U, which is realized when the 
algorithm is applied, on the parameter o is shown by the dashed curve in Fig. 3. It is clear that constraints 
(1.5) are satisfied for all the values of o < 26 considered. 
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